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Power-law scaling in Bénard-Marangoni convection at large Prandtl numbers
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Bénard-Marangoni convection at large Prandtl numbers is found to exhibit steady~nonturbulent! behavior in
numerical experiments over a very wide range of Marangoni numbers Ma far away from the primary instability
threshold. A phenomenological theory, taking into account the different character of thermal boundary layers at
the bottom and at the free surface, is developed. It predicts a power-law scaling for the nondimensional
velocity ~Peclet number! and heat flux~Nusselt number! of the form Pe;Ma2/3, Nu;Ma2/9. This prediction is
in good agreement with two-dimensional direct numerical simulations up to Ma53.23105.

DOI: 10.1103/PhysRevE.64.027303 PACS number~s!: 47.27.Te, 47.20.Dr, 47.15.Gf, 47.15.Cb
n
rt
l
-
lin

rg

-
a

r
id
n

e
0

ea
.

ur

o-

di

e

-

he

era-
um-

een

-
od.

es,

ior
et
orc-
e
the
ho-
e-
in
I. INTRODUCTION

Turbulent Rayleigh-Be´nard convection@1# has been ex-
plored over a wide range of Rayleigh numbers Ra a
Prandtl numbersP, thanks to the comprehensive joint effo
of experimental@2–6#, analytical@7,8#, and two-dimensiona
@9# and three-dimensional@10# numerical studies. In particu
lar, the development of experimental techniques for hand
substances such as He or SF6 in the vicinity of their critical
points has permitted one to analyze convection at la
Prandtl numbers@6# in great detail.

In contrast to buoyancy-driven Rayleigh-Be´nard convec-
tion, the understanding of surface-tension-driven Be´nard-
Marangoni convection@11# is relatively poor. In spite of its
widespread occurence in materials processing@12# and
chemical engineering@13#, phenomenological models pre
dicting the scaling of the Nusselt number Nu on the M
rangoni number Ma have only recently begun to appear@14#.
The present paper focuses on such scaling behavio
Bénard-Marangoni convection in large-Prandtl-number flu
employing both two-dimensional numerical simulations a
boundary layer analyses. In contrast to Rayleigh-Be´nard con-
vection, the simulations do not show a transition to tim
dependent or turbulent flow even at Ma more than 40
times the critical value. For such high values of Ma, the h
transport in the~laminar! simulations shows scaling on Ma
The exponent is in good agreement with the result Nu;Ma2/9

derived from a boundary layer analysis of the temperat
field.

II. MATHEMATICAL MODEL

We consider a one-layer approximation for tw
dimensional Be´nard-Marangoni convection@15#. The heat
flux densityq at the free surface is prescribed. The non
mensional computational model in the domain 0<z<1, with
periodic boundary conditions inx, comprises the following
dimensionless equations and boundary conditions:

P21@] tv1~v•“ !v#52“p1“

2v, ~1a!
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“•v50, ~1b!

] tT1~v•“ !T5“

2T, ~1c!

vx5vz50, T51 ~at z50!, ~1d!

vz50, ]zT521, ]zvx52Ma ]xT ~at z51!.
~1e!

Equations~1! are based on the layer thicknessd as the unit of
length, d2/k as the unit of time, andqd/l as the unit of
temperature, wherel denotes the heat conductivity of th
fluid. Velocity v5vxex1vzez and temperatureT depend onx
andz only. The Prandtl numberP5n/k represents the ratio
of kinematic viscosity and thermal diffusivity. The Ma
rangoni number is defined as Ma5gqd2/lrnk, wherer de-
notes the density of the fluid andg52ds/dT is the ~nega-
tive! derivative of the surface tension with respect to t
temperature.

The instability of the basic statev50, T512z occurs
above Mac'79.6 for a wave numberkc'1.99 @15#. Since
the heat flux is prescribed, convection reduces the temp
ture difference across the layer. Therefore, the Nusselt n
ber is defined as

Nu51/DT, ~2!

whereDT denotes the mean temperature difference betw
the bottom and the free surface.

We solve system~1! numerically using a streamfunction
vorticity based, pseudospectral Fourier-Chebyshev meth
The scheme is similar to that presented in Ref.@16#. In order
to ensure high resolution with a moderate number of mod
we consider a single basic cell of lengthL52p/kc .

The goal of the simulations was to determine the behav
of Bénard-Marangoni convection in the limit of large Pecl
and small Reynolds numbers, i.e., in the case of strong f
ing by the instability mechanism but with sufficiently larg
Prandtl numbers to render the convective terms in
Navier-Stokes equations negligible. Therefore, we have c
sen to consider the limit of infinite Prandtl number. The n
glect of nonlinear terms reduces the computational load
©2001 The American Physical Society03-1
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the simulations considerably. The applicability of this lim
for high-Prandtl-number Be´nard-Marangoni convection wa
already demonstrated in a number of theoretical and num
cal studies@17,18#. For our case, the computational resu
for infinite P and P5100, which is a typical value for sili-
cone oils, match closely up to values of Ma'105, i.e., for
more than three decades above the onset of instability. T
I shows the simulation results and the numerical parame
used. With three-dimensional simulations, such high val
of Ma are currently not accessible.

III. RESULTS

An unexpected observation in all our numerical simu
tions was the complete absence of time-dependent flows
the reproducible evolution toward robust stationary ro
~shown in Fig. 1! from arbitrary initial conditions. Although
Ma exceeded Mac by more than three orders of magnitud
no temporal change was observed in the boundary la
structure of the temperature field@Figs 1~a! and 1~b!# and in
the streamlines@Fig 1~c! and 1~d!#. In contrast, in Rayleigh-
Bénard convection between free-slip boundaries, the fl
becomes time-dependent at Ra'43104 @19#, which is about
102 times the critical value for onset of convection. Althoug
our observations do not exclude the possibility of instabi
and time-dependent behavior at even larger Ma, this scen
does not seem very likely.

One heuristic argument supporting this view is based
the coupling between temperature and flow fields.
Rayleigh-Bénard convection, the buoyancy term couples
temperature and velocity distributions throughout the flu
In Bénard-Marangoni convection, the equations for veloc
and temperature decouple in the bulk. Only the Marang
boundary condition at the free surface transmits informat
on the temperature distribution to the velocity field. This m
be a severe limitation for the occurence of instabilities of
steady rolls. Moreover, the lateral temperature gradient
the free surface do not grow sufficiently fast to support
hydrothermal wave instability@20#. A final answer on this
issue requires a linear stability analysis of the roll solutio

The absence of secondary bifurcations simplifies
analysis of the asymptotic state. Figure 1 shows that, u
increasing the Marangoni number, thermal boundary lay
form around an isothermal core in the center of the ro
Vertical temperature profiles plotted in Fig. 2, which rep

TABLE I. Simulation parameters and data.Nx andNz denote the
number of collocation points. The quantity^T&(0)2^T&(0.5) is an
estimate of the thickness of the thermal boundary layer at the
tom.

Ma Nx Nz u Nu ^T&(0)2^T&(0.5)

1.03104 512 65 5.463101 3.98 0.222
2.03104 512 65 8.743101 4.71 0.188
4.03104 1024 129 1.403102 5.56 0.160
8.03104 1024 129 2.243102 6.56 0.137
1.63105 1024 129 3.593102 7.72 0.117
3.23105 2048 129 5.753102 9.08 0.100
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sent horizontal averages, are particularly striking. T
streamline pattern in the bulk remains approximately
same. Strong velocity gradients occur only at the downfl
regions of the free surface. The spatial rms velocityu ~i.e.,
the Péclet number! is shown as function of Ma in Fig. 3~a!.
Our numerical results are very well fitted by

u;Ma0.68. ~3!

t-

FIG. 1. Isotherms@~a! and~b!# and streamlines@~c! and~d!# for
P5` and Ma5104 @~a! and ~c!# and Ma53.23105 @~b! and ~d!#.

FIG. 2. Vertical profiles of the horizontally averaged tempe
ture ^T& for P5`.
3-2



y
he

e
nt
ai

tl

ge
o
gl
t

n

any

nce

ese

s
e-

al

nu-

f-
the

-

an

a-

s-

nal

me,

ht

-

BRIEF REPORTS PHYSICAL REVIEW E 64 027303
For Nu as a function of Ma@Fig. 3~b!#, a power-law fit is not
as exact, but still rather good. We obtain

Nu;Ma0.24 ~4!

from our numerical data.
The observed scaling exponents can be explained b

simple phenomenological model. The derivation of t
model is very similar to that presented in Ref.@16# for iner-
tial Bénard-Marangoni convection. We shall not take the d
tailed flow structure such as corner regions of the rolls, i
account. A more refined approach including these det
could be guided by the models of Roberts@21# for two-
dimensional Rayleigh-Be´nard convection at infinite Prand
number.

The cornerstone of the model is the kinetic-energy bud
For steady convection, energy input through the Marang
effect is equal to dissipation through viscosity. For a sin
roll cell located in the interval 0<x<L/2, we have the exac
relation

2MaE
0

L/2

vx]xTdx5E
0

1E
0

L/2

v2dxdz, ~5!

FIG. 3. Power-law scaling of~a! the rms velocityu ~i.e., the
Péclet number! and~b! the Nusselt number Nu on Ma. The straig
lines ~power laws! interpolate the values for Ma51.63105 and
Ma53.23105 (P5`). Data forP5100 are very close to the val
ues for infiniteP.
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wherev5]zvx2]xvz denotes the vorticity. The integral o
the left hand side is evaluated at the free surfacez51. We
shall now estimate the terms in the energy budget.L is as-
sumed to be of order unity, and is not taken into account
further. The right hand side is then just;u2. On the left hand
side we assume that the velocity at the free surface is;u.
We then have to estimate the surface temperature differe
across the roll. As for inertial convection@16#, we assume
that it is of the same order as the temperature dropDTtop
across the free surface thermal boundary layer. Putting th
estimates into Eq.~5! yields

MaDTtopu;u2. ~6!

In order to determineDTtop , we first estimate the thicknes
d top of the free surface boundary layer. The horizontal v
locity is of order u throughout the free surface therm
boundary layer. From the boundary condition]zT521 at
z51 and the estimated top;u21/2, it follows that

DTtop;u21/2. ~7!

Using Eqs.~6! and ~7!, we obtain the scaling law

u;Ma2/3, ~8!

where the exponent is in excellent agreement with the
merical value of 0.68 in Eq.~3!.

For the Nusselt number defined in Eq.~2!, the total tem-
perature difference

DT5DTtop1DTbot ~9!

must be estimated, whereDTbot denotes the temperature di
ference across the bottom boundary layer. In contrast to
free surface,vx is zero atz50. Across a distancel from the
bottom,vx rises to values of orderu ~except near the bound
aries between rolls!. As noted in Ref.@7#, sufficiently close to
the bottom and away from the lateral roll boundaries we c
approximate the velocity field by a linear profilevx5zu/ l ,
vz;O(zvx). With this assumption, the boundary layer equ
tion for the temperature at the bottom becomes

~uz/ l !]xT5]z
2T. ~10!

The length scalel is determined by the streamfunction di
tribution only, which is insensitive to changing Ma@cf. Figs.
1~c! and 1~d!#. From Eq.~10!, the thicknessdbot of the ther-
mal boundary layer can be estimated either by dimensio
analysis or by using the similarity solution in the variablej
5z/( lx/u)1/3 given in Ref.@7#. We find

dbot;u21/3. ~11!

Since the heat flux at the top and bottom must be the sa
the mean slope of the temperature profile atz50 must be
equal to21. Consequently,

DTbot;u21/3. ~12!
3-3
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We see that, for largeu, the contribution from the bottom
boundary layer dominatesDT. The Nusselt number therefor
scales withu1/3. Using Eq.~8!, we end up with the relation

Nu;Ma2/9. ~13!

The constant slope of21 of the mean temperature profile
the top and bottom is obvious from Fig. 2, as well as
increasing difference in thickness between the top and
tom boundary layers. For the scaling of Nu on Ma, the
viation of our numerical exponent 0.24@cf. Eq. ~4!# from the
theoretical value of 2/9 is largely due to the contribution
DTtop . To eliminate this effect, we consider the quant
^T(x,z50)2T(x,z51/2)& given in Table I, wherê & de-
notes the average with respect tox. This quantity is a good
measure ofDTbot for sufficiently large Ma. The theoretica
scaling exponent forDTbot on Ma is22/9. A power-law fit
of the simulation data gives20.228, which is considerably
closer to the theoretical value than the exponent for Nu.

IV. DISCUSSION AND CONCLUSIONS

A prerequisite for the applicability of theP5` results for
finite P is that the Reynolds numberu/P, i.e., the velocity in
viscous units, remains small compared with unity. Otherw
the convective term in Eq.~1a! will affect the streamline
pattern, and, together with the time derivative, will even
ally cause hydrodynamic instabilities. If we assume t
ell

R
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steady laminar convection breaks down at a Reynolds n
ber Rei , we can estimate the corresponding threshold Mi
using Eq.~8!. The result is

Mai;P3/2. ~14!

In our simulations withP5100 this threshold was neve
exceeded, whereas in a simulation withP510 and Ma
51.63105 the flow turned out to be time dependent.

Experimental measurements of Nu over a wide range
Ma in Bénard-Marangoni convection at largeP have so far
not been made. The experiments of Eckertet al. @22# reached
Ma'10Mac , but for the silicone oil-air systems conside
able further progress is unlikely. A more promising candid
for large values of Ma may be SF6 near its critical point, but
the feasibility of such experiments requires further analy
Concentration-driven Marangoni convection at a hi
Schmidt number~the analog ofP), which is governed by the
same basic equations, could also be considered as an op

In conclusion, we have shown that two-dimension
Bénard-Marangoni convection at largeP remains steady up
to very large values of Ma. The asymptotic state is char
terized by laminar boundary layers, which are of differe
type at the top and bottom. Velocity and heat transport
controlled by the upper and lower thermal boundary lay
respectively. We find a good agreement between our num
cal results and the power laws predicted by a phenomen
gial model.
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